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Abstract— We present a novel system architecture for 

sparse pattern processing, using flash storage and an in-

storage embedded accelerator. Placing commonly used 

computing kernels in direct access to a data source 

achieves high performance, without increasing the 

requirements for system memory. We show that the 

sparse pattern matching accelerator is useful for general 

sparse vector multiplication, feature matching, subgraph 

matching, protein database search, and machine 

learning applications. In our prototyping experiment, 

one accelerator slice can outperform a 16-core system at 

a fraction of the  power and cost. 
 

I. INTRODUCTION 

Many data analytics of interest deal with sparse data, 

including audio, video, images, and documents. Document 

search or clustering algorithms often represent documents as 

a bag-of-words, and many algorithms, including important 

machine learning algorithms, have been designed to work 

on data represented as sparse matrices and vectors. 

In many cases, the size of data is too large to be 

accommodated in the system memory of a single machine 

[1]. At the same time, the processing requirement of the 

problems is large enough that processing itself can become 

the bottleneck. The traditional way to overcome this 

situation is to either use a cluster of machines so that data 

can be accommodated in the collective main (DRAM) 

memory, and computation can be distributed across the 

machines in the cluster [2]. Scaling out, however, increases 

cost and reduces efficiency. Recently, new server systems 

can accommodate large amounts of memory and multiple 

CPU sockets, enabling more memory and compute capacity 

per platform. A quad-socket system with 1.5 TB memory 

and four 12-core CPUs (48 cores total) can be put together 

for $27k, or with high premium 18-core CPUs for $49k. 

This is still a  costly solution. The cost increases with 

memory and very steeply with number of cores in the 

system. 

One alternative solution is to use a fast flash-based 

secondary storage such as Solid-State Drives (SSDs) for the 

main data store instead of a large memory, accepting that 

most of data access will happen on the secondary storage, 

and optimize for it. Industry has been heading this way with 

recent advances such as Non-Volatile Memory Express 

(NVMe) devices, making this type of solution more 

attractive.  

On the computing front, using application-specific 

hardware accelerators [3] can offer one to three orders of 

magnitude better performance with less power consumption 

compared to CPU cores performing the same task. Many 

accelerator devices are packaged as an independent system 

component that can be plugged into a high-speed bus such 

as PCIe to interface with CPUs and system memory. 

In this paper, we demonstrate a novel system 

architecture called In-Storage Computing that integrates the 

storage and computing solutions together to reduce memory 

size and CPU workload [4]. An illustration is shown in 

Figure 1. The Field-Programmable Gate Array (FPGA) is 

used as the application-specific accelerator. In this 

architecture, it takes on two additional roles: to interface 

directly with storage, and to provide dedicated high 

bandwidth network for scalability. 

In high-volume data processing, besides the number 

crunching tasks, there are many other activities such as 

handling data structures, indexing, pointer arithmetic, file 

operation, network operation, etc., that also demand 

significant CPU resources. Most could be off-loaded to very 

efficient application-specific logic in the FPGA. 

 

 
 

Sparse pattern processing is one class of applications 

that requires complex data handling and does not lend itself 

to the pipelined SIMD vector processing units in the CPU. 

This is one good candidate for acceleration on our in-storage 

computing architecture. Our particular application is 

document search, which can be described as: Given a 

document with one set of prominent words, search for others 

that may cover similar topic(s) or sentiment(s). The words 

are sparse in vocabulary space, hence, sparse pattern 

processing. The operations in sparse pattern processing can 

be extended to natural language processing, bioinformatics, 

subgraph matching, machine learning, and graph processing. 

[5][6][7]. A recent effort, the GraphBLAS [8], aims to 

standardize some of these computational kernels in order to 

support the development of hardware-acceleration [9]. 

A well-designed accelerator could benefit many fields. 

We will show that our baseline accelerator outperforms a 

16-core large memory server system, and matches a 24-core 
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Figure 1: In-Storage Computing Architecture 



system under certain conditions, using only 2/3  power. An 

optimized version could match a 48-core system at ¼ power 

and cost.  

The paper is organized as follows. Section II describes 

sparse pattern matching using document search as an 

example. Section III presents some important applications 

that could benefit from accelerated sparse pattern matching. 

Section IV introduces our architecture in detail. Section V 

describes implementation details of the prototype system 

and its performance measurements. Sections VI and VII 

conclude with discussions and summary. 

II. SPARSE PATTERN MATCHING 

Many important types of information can be naturally 

represented in a sparse manner, and many important 

applications deal with data organized into a sparse 

representation, such as sparse vector or matrices. A high-

performance platform for processing sparse patterns can be 

a useful tool for solving many problems. In this section, we 

describe sparse pattern matching using one of its key 

applications, document matching. 

A. Document Matching 

The objective of document matching is to find document 

candidate(s) that match best to a query document 

[10][11][12]. Documents that discuss similar topics would 

use similar vocabulary at high level of occurrences. The 

topics can be abstracted out into mathematical models based 

on the words, their frequencies, and with more 

sophistication, the ordering and grouping of the word 

appearances. Example uses are in natural language 

understanding, relationship extraction, sentiment analysis, 

topic segmentation, information retrieval, predictive 

analysis, and bioinformatics. 

A simple representation of a document search 

application is shown in Figure 2. Documents A and B would 

be preprocessed to extract words with occurrences above 

some set threshold. The vocabulary set is the superset of all 

prominent words in all documents in the collection. In the 

UCI Machine Learning Repository [13], the collection of 

NY Times articles contains around 300,000 documents with 

about 100,000,000 words and a prominent vocabulary set of 

about 100,000. The Enron email collection has almost 

40,000 emails with about 28,000 prominent words. 

 

 

B. Comparison metric: Cosine similarity 

Each document can be represented as an N-dimensional 

vector, where N is the size of the bag-of-words. In the above 

example, the Document-A vector is stored as a sparse vector 

of 4 non-zero elements. Document-B vector also happens to 

have 4 non-zero elements although this could vary widely 

depending the number of prominent words in the document 

above the set threshold.  

One simple and effective method for comparing high-

dimensional vectors is the Cosine similarity metric, which is 

defined as follows (the top computes the correlation, and the 

bottom performs the normalization): 

 
As illustrated in Figure 3, the vectors that are closely 

aligned would result in large Cosine metric.  

 

 
 

 

    The normalization in the above equation can be pre-

computed for each vector. Let’s now focus on the numerator, 

which computes the correlation, or dot product, of vectors A 

and B. This computation is illustrated in Figure 4 for both 

sparse and full formats. The term-wise multiplication of Ai 

and Bi creates partial products PPi for each term, but due to 

sparsity, only terms PP1 and PP7 need to be created. The 

correlation score is the summation of these partial products.   

 
 

 

  

    The match processing between a document-A against the 

whole collection can be formulated as a matrix-vector 

multiplication as illustrated in Figure 5, where both the 

matrix and the vector are sparse. If the queries are batched 

together, for example, [document-AA, document-AB, …], 

the problem can be formulated as sparse matrix-matrix 

multiplication. 

 

 

Figure 2: Document Matching 

Figure 3: Cosine as Alignment Metric 

Figure 5: Document Search and Classification 

Figure 4: Pattern Matching as Sparse Vector 

Multiplication 



 

    There are many opportunities for parallelizing the 

processing. As illustrated in Figure 5, one approach is to 

partition the database matrix into K subsets (separated by 

dividing lines) and compute in parallel on K accelerator 

kernels. If a batch of L queries is issued, the work can be 

performed in parallel on K*L kernels. Analysis is required to 

determine the value of K and L parameters to match 

optimally the accelerator computing capability, data 

bandwidth, and local working storage. 

 

III. OTHER APPLICATIONS 

A. Subgraph Matching 

Document matching could be extended into the graph 

processing domain by considering subgraphs to be 

documents, and conducting a search for subgraphs that 

contain similar vertices, as illustrated in Figure 6. Each edge 

is mapped into a “word” that contains the labels of its two 

vertices, and subgraphs can have different number of edges. 

The labeling and partitioning into subgraphs depends on the 

application context, our focus here is on the acceleration of 

subgraphs matching. 

 

 
 

 

Each edge traversed in the graph corresponds to a word 

match in the document comparison, or equivalently, a non-

zero partial product.  

B. Feature Matching in Machine Learning 

Machine learning algorithms train their classifiers by 

churning through massive data to evaluate “feature scores”, 

and attempt to optimize an objective function that aligns the 

classifications to desired outcomes. This involves adjusting 

the coefficients and repeatedly going through the evaluation 

process until the accuracy is deemed acceptable.  

For example, a facial recognition application would 

operate on features extracted from facial images. A feature 

vector corresponds to a document, and the training process 

involves many rounds of matching documents against 

classifier candidates, not too different from scenario 

depicted in Figure 5.   

Operation on sparse features further enables efficient 

evaluation of neural networks. Most approaches based on 

neural nets require a large training dataset and intense 

number crunching. If these requirements can be met for an 

application in a low-power and portable form factor, the 

training of neural networks could take place in the field for a 

variety of different applications. 

C. Bioinformatics 

High dimensional search using a bag-of-words 

representation is also useful in the field of bioinformatics. 

For example, researchers who discovered new protein 

sequences use protein search tools such as BLAST [14] to 

find previously discovered and annotated proteins in order 

to guess the genealogy and function of the newly discovered 

protein. Since performing an optimal search algorithm such 

as Smith-Waterman on the entire annotated protein database 

is expensive, each protein sequence in the database is pre-

processed into a more easily searchable format, such as bag-

of-words. The goal of this pre-processed format is not to 

find the most similar reference sequence by itself, but rather 

to determine a smaller set of reference sequences that are 

statistically likely to be similar to the query. This reduces 

the search space of the optimal algorithm. 

We have experimented with this approach, by first pre-

process each protein sequence to generate a sparse bag-of-

words representation of all 3-mers, and then perform a 

global search. The sparse metadata extracted from the 

UniProt TrEMBL dataset [15] is reduced from 35 GBs to 

approximately 4 GBs, and requires only 2 seconds in our 

flash-based prototype to be traversed in its entirety. 

 Figure 7 shows how an example protein sequence can 

be organized into a bag-of-words representation. Once all 

reference protein sequences in the dataset are processed and 

encoded in such a sparse format, the same document search 

kernel can be used to quickly search for reference proteins 

statistically likely to be similar to the query. 

 
 

 

IV. ACCELERATOR DESIGN 

As part of the design process, we performed analysis and 

experiments to gain insights into the application and identify 

bottlenecks. Decomposing the application into key functions 

and performing benchmarking, we can tell if performance is 

bounded by data bandwidth or computing capability. 

For document matching, computing the Cosine 

similarity metric is the key function and specialized 

hardware, in the form of sparse vector multiplication, can 

have a significant effect on the performance. This 

application can also use multiple copies of this accelerator 

in parallel. 

Fast data access is almost always required to keep the 

computing kernels busy. Each vector multiplication requires 

a new vector to be delivered to the kernel. On a system with 

large memory, all vectors can be loaded and kept in memory 

at first use so that subsequent accesses are fast. But on 

smaller system, secondary storage will need to be accessed, 

Figure 6: Subgraph Matching 

Figure 7: Organizing a Protein Sequence into Bag-of-Words 



thus, limiting the data bandwidth to the kernels. In the 

current technology, there is a 25X to 100X difference in 

system memory bandwidth and the secondary storage 

bandwidth.  

Whereas a CPU-based system with high memory 

bandwidth is likely to be compute bound, our accelerator 

using flash would be bandwidth bound. It is, therefore, 

critical that we use data structures that are as bandwidth 

efficient as possible. 

A. Data Structure 

Our document encoding schema is illustrated in Figure 8. 

Rather than storing the words, we are storing the index into 

the bag-of-words. This requires an indexing step, but allows 

for much flexibility in abstraction, for example, “words” can 

be phrases, strings, or even other features (images) of the 

document, etc.  

 

 
 

 

To make effective use of storage bandwidth and 

computation, we encoded the vectors, or pattern datasets, 

into binary format as shown in Figure 9. Each data item is 

32 bits wide. Pending on a flag bit, each data item can either 

be a pattern identifier, i.e., “Document A”, or a key/value 

pair for each word in the document. Comparing to the 

original data format from UCI repository [18], which 

replicates the documentID with each wordID and storing 

one word per line of 256 bytes, this format uses only one 4-

byte documentID followed words encoded in 4 bytes each. 

This compact format significantly saves storage bandwidth, 

considering each document contains about 60 prominent 

words.  

 
 

 

B. Architecture 

A reference software implementation was developed to 

provide benchmark functionality and a framework for later 

integration of the accelerator. The implementation is 

parameterized so the user can choose the number of worker 

threads to spawn. Each worker is given a contiguous 

partition of the dataset to work on, along with its own copy 

of the query pattern. After finishing execution, each thread 

reports its top pattern with the largest cosine metric. The 

main thread then selects the global nearest pattern from the 

small list of local patterns. 

In the FPGA-accelerated design, the FPGA platform is 

inserted between the flash storage and the host server. A 

software scaffolding infrastructure [4] shown in Figure 13 is 

provided for rapid development of multiple accelerator 

kernels. Since most of actual computation is offloaded into 

the FPGA, the host software is only responsible for 

managing data organization and routing, and almost no 

actual computation. As a result, a very small processor 

could be used and still make full use of storage device 

bandwidth.  

When the host software sends a read or write command 

to the storage device, the data transfer is default to be 

between storage to/from host server memory. Optionally, it 

can specify source and destination to be one of the various 

accelerator kernels on the FPGA. The host software also 

provides an additional interface for sending and receiving 

sideband information to each kernel. 

Figure 10 shows the interaction of host software, 

accelerator, and flash storage. Each FPGA accelerator 

kernel implements the same interface, and can be accessed 

through 4 ports: dataIn (512 bits), commandIn (128 bits), 

resultToMemory (128 bits), and dataToStorage (512 bits). 

Data read from flash storage is streamed through dataIn, and 

the host software sends additional information such as 

commands via the sideband port commandIn. As the 

accelerator performs computation, it can send data that 

needs to be stored to flash via dataToStorage, or to host 

software via resultsToMemory. The accelerator can send 

data over these two ports at any time during computation. 

The host software is responsible for managing the ports, for 

example, maintaining a list of free pages that dataToStorage 

uses. 

 
 

    

An architectural view of the sparse pattern matching 

kernel is illustrated in Figure 11. It consists of a query 

memory, accessed through the sideband datapath, and a 

chain of computation modules for calculating the cosine 

similarity between the query and data from flash storage. 

Multiple kernels are implemented in the system in order to 

make full use of the flash storage bandwidth. Each kernel 

receives its own data routed from flash storage as controlled 

by the host software, which sends pages in round-robin 

fashion for best use of flash bandwidth and maximizing 

accelerator performance. Data pages from flash do not 

Figure 8: Document Encoding Schema 

Figure 9: Data Format 
Figure 10: Accelerator Interface 



necessarily arrive in order, which necessitates re-ordering 

and other low-level coordination activities that take place in 

the flash storage interface logic block [4]. 

 

 

 

 
 

 

    In the matching of the two sparse encoded vectors, the 

accelerator kernel uses two pointers to query memory and 

data from flash that has been routed to block RAM as 

illustrated in Figure 12. These pointers track the key/value 

pair being processed. If the keys in both memories match, 

appropriate processing can take place. Otherwise, one of the 

pointers needs to be incremented depending on which is 

bigger. Unlike the data pointer, which is always increasing 

because the data is streaming in from flash, the query 

pointer needs to be “rewound” when the end of a vector is 

reached. But if we were to only load query data only after 

we knew no rewinding is required, we would waste valuable 

cycles and not be keeping the query memory busy. As a 

solution, a prefetch predictor has been added to the query 

memory block to queue prefetched values into the 

comparison unit in Figure 12. If it is determined that 

prefetched values are not needed (Rewind), they are flushed 

by the dequeuing logic.  

V. IMPLEMENTATION & RESULTS 

A. System description 

Our application was implemented on a single-node setup 

of MIT’s BlueDBM system [10]. The single-node 

BlueDBM system consists of a 24-core Xeon server and a 

BlueDBM storage device, which is a pair of a Xilinx VC707 

FPGA development board and custom flash modules with 1 

TB capacity. The flash device is capable of 2 GB/sec 

throughput. A host server also includes 50 GBs of DRAM. 

The BlueDBM device and host server are connected via a 

Gen2 x8 PCIe link. Figure 13 highlights one “accelerator 

slice” on a server computer and the software infrastructure 

for integrating the accelerator.  

Eight accelerator cores were used to fully saturate flash 

bandwidth. Each accelerator was given 8 KBs of query 

memory on the on-chip block RAM. The 8-KB size allows 

for up to 2K non-zero elements in the sparse query vector. 

The size of the query memory could be made larger and 

more accelerator cores could be used, but this was more 

than adequate for our example application. 

 

 

We used UCI’s bag-of-words dataset [13] as the 

example dataset. The UCI dataset processed multiple 

document collections including Pubmed, and created bag-

of-words databases of each collection. Each database 

consists of a vocabulary file that maps words to wordIDs, 

and a doc file that contains {documentID, wordID, 

wordCount} tuples. For effective use of disk and memory 

bandwidth, we encoded each dataset in the binary format 

described earlier in Figure 9. Since the UCI dataset is fairly 

small, we developed a data synthesizer that generates 

permutations to create datasets of 100 GBs or more for our 

experiments. The synthesizer permuted documents in the 

dataset by adding and removing random words, and 

assigning random word count values to some words. 

B. Results 

The document matching performance was averaged over 

an interval of 10 seconds for several system configurations: 

(1) Data on hard disk, (2) Data on “RAM-Disk”, (3) Data 

stored in memory, and (4) BlueDBM with data in flash.  

Configuration (2) bypasses the mechanical operation of 

the disk but still requires the computer operating system to 

perform file operations, which approximates the 

performance upper bound with SSD devices. Configuration 

(3) corresponds to the new trend of high-end in-memory 

database processing enabled by recent increase in computer 

memory sizes and substantially many more CPU cores 

available to take advantage of the large memory working 

set. Configuration (4) off-loads most operation to its FPGA 

accelerator, thus, places minimum requires on CPU and 

memory. The BlueDBM flash modules provide affordable 

large storage with high transfer rate to keep the accelerator 

operating at full throttle. 

Figure 12: Prefetching of Query 

Figure 11: Sparse Matching Accelerator Architecture 

Figure 13: BlueDBM System 



  

Table 1: Document Matching Rate 

Number 

of CPU 

threads 

CPU - 

Matlab 
CPU – C++ BlueDBM 

with 8 

compara
tors 

In 

memory  
Data in 

hard drive 

Data in 

file buffer 

Data in 

memory 

1  0.31  0.31 (M)  0.88 (M) 0.94 (M) NA 

2  0.31  0.38  1.56 1.73 

10.35 (M) 

4  0.34   0.41  2.68 3.35 

8    0.44   4.15  6.64 

16   0.46  5.84 9.76 

24 0.6      0.5  6.43  13.17 

 

Table 1 shows millions of documents matched per 

second for the various configurations, scaling from 1 CPU 

threads to 24 threads. A graphical depiction is given in 

Figure 14. Configuration (1) with hard disk is clearly limited 

by the disk bandwidth. Configuration (2) scales up nicely, 

but eventually runs into limitation by file processing 

functions within the operating system, and peaks at 6 

million docs/sec. This could be viewed as the upper bound 

for storage solution with RAIDed SSDs. 

Configuration (3) benefits from its direct access to data 

in memory, achieving the highest rate of 13 million 

docs/sec. In real-life setting, the computer would need to 

read data from secondary storage into memory at least once, 

so performance would be somewhere in between 

configurations (2) and (3).  

Configuration (4) reaches its peak at 10 million, limited 

by the bandwidth of BlueDBM flash modules. This is 

slightly lower than configuration (3), but almost twice 

configuration (2).  

Note that configuration (4) achieves 10 million docs/sec 

with only 2 CPU threads, leaving the rest available for other 

functions. This also suggests that a much smaller CPU, such 

as those embedded in the FPGA could be used, hence, an 

interesting concept of shrinking and folding the host into the 

accelerator itself! 

 
Figure 14: Document Processed vs CPU Threads 

The power measurements are given in Table 2, ranging 

from 90 Watts idle to 205 Watts maximum by configuration 

(3). As labeled in Figure 14, configuration (4) draws nearly 

40% less power - only 120 Watts while delivering a slight 

reduction in processing rate. This solution is clearly more 

power efficient than configuration (2) which draws more 

power but delivers much less processing.  

Table 2: Power Dissipation 

Number of 

CPU 

threads 

CPU – C++ BlueDBM 
with 8 

comparators 
Data in 

hard drive 

Data in 

memory 

1  120   114 NA 

2  110  134 

120 W 

(idle 90W) 

4  100  145 

8  123  160 

16  112  164 

24  126  205 

 

VI. DISCUSSION 

A. Scalability & Cost 

The performance of BlueDBM accelerator is bounded by 

the bandwidth between the accelerator kernels and the flash 

storage. With 8 kernels processing 10 million docs/sec, the 

sustaining data rate was measured to be about 2 GB/sec. If  

the same volume of data could support more processing, 

such as when queries are issued in batched, then more 

kernels could be added to the accelerator. As depicted in 

Table 3, the FPGA could easily provide 20 kernels to churn 

through 27 million docs/sec if queries are issued in batch of 

3. Alternately, this performance could also be achieved for 

single query case with an increase in flash storage 

bandwidth to 6 GB/sec, by either adding more parallelism to 

BlueDBM flash modules or upgrading the architecture to 

use PCIe-based modules presently available.  

 

Table 3: Accelerator Scalability 

Kernels in FPGA Million Docs / sec Flash IO (GB/s) 

8 10.35  ~2 

20 27 est. 5.4 est. 

The CPU in-memory processing, in contrast, is not 

bandwidth but rather processing limited. Using CPU with 

more cores would increase performance, of course, at a 

steep premium. Figure 15 projects that with 48-cores, a 

server system could achieve 27 million docs/sec. With 

today’s technology, it is not possible to obtain a 48-core 

system in a dual-CPU setting, but a quad-CPU platform can 

meet this requirement with 4 12-core CPUs. 

A quad-CPU 48-core system with ~1.5 TB of memory 

can be obtained from Colfax for $27k, with approximate 

break down of $10k for memory, $7k for platform and 

storage, and $10k for four mid-range 12-core CPUs ($32k 

for four high-end 18-core CPUs). In contrast, a FPGA-based 

accelerator slice including flash modules can be built from 

commercial components for less than $6k.  

Our accelerator could be implemented in two ways: (1) 

with flash modules directly plugged into a FPGA card as in 

BlueDBM hardware, or (2) allowing the flash modules to be 

off-board but maintaining a tight interaction over PCIe, such 

as the upgraded version using NVMe flash devices. The first 

approach requires less PCIe slots on the platform and 



provides better dedicated data bandwidth, whereas the 

second allows for more scalability on large platform and 

possibly easier upgrade with latest technology. 

B. Power Optimization 

Figure 15 captures performance and power dissipation 

for configurations 3 and 4 discussed earlier. The solid red 

curve depicts CPU in-memory processing, and the solid 

green curve for BlueDBM in-storage processing. The dotted 

curves project the trend out to the capability of a slightly 

modified BlueDBM system that could be put together with 

today’s technology as discussed in Table 3.  

 

 
Figure 15: Projection to Technology Generations 

The blue curve shows an interesting variant of 

BlueDBM where the host CPU is downsized and absorbed 

into the accelerator itself, i.e., the host-side 2-thread 

software now run on the embedded CPU within the FPGA. 

This presents a solution for extreme Size, Weight, and 

Power (SWaP) applications. The high density ratio of flash 

versus computer memory, and simplification in power 

conditioning circuitries and cooling, etc., would enable a 

compact implementation suitable for portable use cases. 

The embedded CPU solution would draw only 10 Watts 

at idle rather than 90 Watts as in the full-up design, At the 

10 million doc/sec performance point, the power dissipation 

is less than 50 Watts, and 27 million docs/sec requires only 

90 Watts. This compact implementation would be about 3.8 

times more power efficient than CPU in-memory 

processing. 

C. Sparse Multiplications Performance 

Earlier in Section II, the sparse pattern matching 

problem processing was formulated as a multiplication of a 

sparse vector by a sparse vector in Figure 4. This allows us 

to project our performance to a generic metric of partial 

products per second, where a partial product is produced 

only when its two multiplicands are non-zeros, thus, 

resulting in a meaningful output.  

Our processing of 8.2 million documents with 483 

million words generates 11 million partial products in about 

0.8 seconds. This yields a performance of 13 million partial 

products /sec for sparse vector multiplication. The sparsity 

of the data is characterized by the number of “non-trivial” 

words out of 141,000 vocabulary set. On average, a 

document contains about 60 such words, hence, a sparsity of 

60/141,000 = 0.04%. 

We could notionally attempt to compare our partial 

product processing rate to Graphulo server-side sparse 

matrix multiplication [16], keeping in mind 1) our results 

are immediately consumed – no need for saving back to 

database, and 2) the two datasets even if close in sparsity 

level, will have different number of partial products due to 

the actual distribution of non-zero terms. The data in the 

report had 16 non-zeros per vector, and for a vector of size 

2
17

 = 131,072 ~141,000, the sparsity comes out to be 0.01%, 

not too far from our application parameter. 

Graphulo server-side multiplication peaks at about 

300,000 partial products /sec per pair of CPU cores, 

attributed to architecture of the Tablet server. Assuming 

optimistic linear scaling with CPU cores, it would take a 

system with 43 CPU cores to match one BlueDBM 

accelerator card.  

VII. SUMMARY 

Sparse pattern processing is an important component that 

can be used in many applications dealing with a great 

amount of data, including text analysis, bioinformatics and 

machine learning. In this paper, we have presented a novel 

system architecture that uses high performance storage and 

in-storage accelerators for sparse pattern processing, and 

demonstrated its validity using a prototype implementation. 

Sparse pattern matching techniques such as those 

described in the article have wide applicability to a variety 

of applications. For example, the subgraph-matching 

problem [17] is important in biological networks, event 

recognition and community detection. Other applications 

such as topic modeling [18], centrality [19], and graph 

traversal are also amenable to sparse processing techniques 

[5].  

Our prototype accelerator streaming data from flash 

storage was able to outperform a 16-core multithreaded 

software implementation with all of the data stored in 

DRAM, while consuming much less power. A cluster of 

machines with such accelerators could deliver comparable 

performance compared to a larger conventional cluster, 

while costing much less to purchase and operate.  The 

proposed architecture could be a desirable alternative to 

conventional computer architectures including cloud 

services and low-power field applications.  

There are many directions for future work. First, we 

would like to explore the application of in-storage 

embedded accelerators in a cloud [20][21] or 

supercomputing setting. Our proposed system would be an 

ideal candidate to perform analysis of enterprise and 

research problems in such environments. We are also 

currently developing GraphBLAS compliant operations in 

our system in order to perform common graph and sparse 

linear algebra problems such as one proposed in [22]. We 

would also like to investigate how to integrate our system 



into more general data management solutions such as the 

BigDAWG polystore system [23]. 
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